内容导航:
一、2021成人高考,数学考试范围增加内容
武汉成人高考数学试卷2021年成人高考,理工类考试,高数2专科升本科,考试内容比去年新增了。见下图
高等教育出版社出版的。
第四项,空间解析几何。
第六项,无穷级数。
新增加的空间解析几何,和多元函数一共占20%,无穷级数占7%,大概最多能找到15%吧。也就是150*15%=25分以内。
样题里有收敛半径和通解,有界区域。这个是2020年之前没有的。
像我这种靠数学拿分的,岁数又大的同学,傻眼了。25分简单准备下吧,能学会的就学会。不行就放弃。
二、真题∣19年成人高考高升专数学真题
成人高考数学真题报成人高考要参加入学考试,成人高考高升专入学考试主要考:语文、数学、英语。 没有高中基础的,怕考考不过的可以报我们网课辅导,或者多做练习。据了解大部分同学都很害怕考数学这一科的,小编看了一下往届的真题,考的内容换汤不换药,就是题型都差不多,主要靠大家活学活用。 下面是去年成人高考高升专数学的试题,同学们可以试着练习一下。2019 年成人高考高起点理科数学真题及答案包括 3 个题型。一、选择题:每小题 5 分,共 85 分,在每小题给出的四个选项中,只有一项是符合题目要求。二、填空题:每小题 4 分,共 16 分。三、解答题:共 49 分。解答应写出推理、演算步骤。 本试卷分第 I 卷 ( 选择题 ) 和第 II 卷 ( 非选择题 ) 两部分共 4 页。满分 150 分 , 考试时间 120 分钟。考试结束后,将本试卷和答题卡 - - 并交回。注意事项 : 第 I 卷 ( 选择题,共 85 分 ) 一、选择题 : 本大题共 17 小题,每小题 5 分,共 85 分。在每个小题给出的四个选项中,选出 - - 项符合题目要求的。1. 设全集 U= ( {,23.4 ) , 集合 M= ( 3,4, 则 CuM =A.B.C ( 1,4}D. ( 1,2}2. 函数 y = cos4x 的最小正周期为 A.I B. π D.2 π 2、设用 : b=0; 乙 : 函数 y= kx + b 的图像经过坐标原点,则 A. 甲是乙的充分条件但不是必要条件 B. 用是乙的必要条件但不是充分条件 C. 甲是乙的充要条件 D. 甲既不是乙的充分条件也不是乙的必要条件 4. 已知 tana=1/2,则 tan ( a+ π /4 ) =A.-3 B. 一 1/3 c.1/2 D.35. 函数 y= √ 1-x2 “的定义域是 B. C.D. .6. 设 0 物 D. log;x> 07. 不等式 |x + 第>当的解集为 A. D.8. 甲、乙、丙、丁 4 人排成一行,其中甲、乙必须排在两端,则不同的排法共有 A.3 种 B. 8 种 C.4 种 D.24 种 9, 若向量 a= ( 1, ) , b= ( 1,-1 ) , 则 1/2a-3/2b=;A. ( -1,2 ) B. ( 1,-2 ) C. ( 1,2 ) D. ( -1,-2 )11,y=x2- 4x- 的图像与 x 轴交于 A.B 两点,则丨 AB 丨 =A.3 B 4 C.5 D.614. 若直线 mx +y-1= 0 与直线 4x+ 2y+1= 0 平行,则 m=A. -1 B.0 C.1 D.215. 在等比数列中,若 a4a5= 6,则 a2a3a6a7,=A.36 B.24 C. 12 D.616. 已知函数 f ( x ) 的定义域为 R,且 f ( 2x ) =4x+ 1, 则 f ( 1 ) =A.5 B.3 C.7 D.917. 甲、乙各独立地射击一次,己知甲射中 10 环的概率为 0.9, 乙射中 10 换的概率为 0.5,则甲、乙都射中 10 环的概率为 A.0.45 B.0.25 C.0.2 D.0,752020 年成人高考报名即将开始 考试时间在 10 月 24 日 -25 日 还有 40 多天就要开始考试了,赶紧复习起来 试卷还没有完,想要全部试题,加我们老师咨询。三、瞭望 数学家、计算机科学家张景中院士接受瞭望专访谈教育数学:把数学变容易
武汉成人高考数学试卷数学家、计算机科学家张景中院士
增强国家数学实力,要重视数学的基础研究,重视数学教育和科学普及
数学最初的研究并不是为了孩子,为了教育,而是为了解决工程、技术、科学等方面的问题。要让数学更适合孩子学习,就必须对数学本身进行加工、改造和研究,让它变得更容易学
文 |《瞭望》新闻周刊记者 皇甫平丽
他是中国科学院院士,也是全国优秀教师;他是数学家、计算机科学家,也是中学数学教育的探索者、深受爱戴的科普作家。
把难学的数学变容易,是他长期的研究目标。四十几年来,曾做过中学教师的张景中院士一直在思考让数学变得容易学的方法,为此提出了介于数学和教育学之间以数学为主的交叉研究方向——教育数学,探索出一批把数学知识变容易的实例,涉及几何、三角和微积分。相关的教学实验结果显示,学生的思维更活跃,分析和解决问题的能力明显提升,数学成绩优秀率大大提高。
张景中毕业于北京大学数学力学系,1995年当选为中国科学院院士,在机器证明、教育数学、距离几何及动力系统等多个学科领域作出了突出的贡献。
作为教育数学的开拓者,他致力于改造数学,提出更适宜于教学和学习的新概念新方法新思路。同时,他把多年来在教育数学研究中所发展的几何新方法用于机器证明,并提出消点思想,创建了几何定理可读证明自动生成的原理和方法。
“改造数学使之更适宜于教学和学习,是教育数学为自己提出的任务。”在近日举行的第二届融汇中西教育论坛期间,张景中院士接受本刊专访时说,减负是教育的一个重要议题。对数学课来说,减轻负担最有效、最根本的一个方法,就是把数学本身变得更有效、更容易学。
2020年6月22日,四川省凉山彝族自治州布拖县的阿布泽鲁小学,学生在数学课下课后向老师请教问题 李梦馨摄/本刊
所谓教育数学,就是为教育的数学
《瞭望》:你提出教育数学的思想,是针对数学教学中存在的哪些问题?希望起到什么样的作用?
张景中:教育数学不针对数学教学方法中的问题。关于教学方法,全世界都很关心,有长期的丰富研究。中国古代就提出启发式教学法。关键是老师要根据实际情形灵活掌握,运用之妙,存乎一心。
教育数学关注的是长期以来被数学教育研究忽视的重要问题,就是教学内容问题。如果教学内容得到优化,把概念变得容易理解了,把解题方法改进得好用了,再加上生动直观的信息技术的动态画板演示,各种教学方法都会有更好的效果。
1989年,我在15年思考探索和教学经验的基础上,提出了教育数学的概念。所谓教育数学,也就是为教育的数学。改造数学使之更适宜于教学和学习,是教育数学提出的任务。简单而通俗地说,就是要把数学变容易。
《瞭望》:数学重要,但难学。怎样把数学变容易?
张景中:数学家阿蒂亚在1976年就任伦敦数学会主席时的演说中说:“如果我们积累起来的经验要一代一代传下去,就必须不断努力把它们简化和统一。”“过去曾经使成年人困惑的问题,在以后的年代里,连孩子们都能容易地理解。”
把数学变容易,基本的想法是:
熟悉了就容易。尽可能把要学的新知识和学生已经熟悉的东西串通起来,旧瓶新酒,推陈出新。
简单了就容易。寻求更简单的表述方式,更通用更有力的解题方法,为大量问题提供有章可循的解决途径。
想通了就容易。尽量把前后左右的知识串通起来,把道理说清楚。
直观了就容易。形数结合,动静结合,充分利用教育信息技术提供的工具和环境,在数学实验中变抽象为具体,体验数学之美。
为此,就要做切实的基础数学研究。这包括提出新定义新概念,建立新方法新体系,发掘新问题新技巧,寻求新思路新趣味。凡此种种,无不是为教育而做数学。
基础教育中的数学,讲的是普适的最一般的数学事实。大道至简,最一般的道理应当是易于表达和理解的。因此,有可能让“过去曾经使成年人困惑的问题,在以后的年代里,连孩子们都能容易地理解”。
《瞭望》:在你看来,数学在增强国家科技创新能力中有着怎样的作用?
张景中:增强国家数学实力,要重视数学的基础研究,重视数学教育和科学普及。
数学作为一门基础学科,是学习其他学科的重要前提。学好数学对于培养探索精神、思维的严密性、求真的执着精神等都有重要意义。
科技创新和数学的关系非常密切。科技创新研究的方法主要表现为逻辑推理、实验观察和计算,而这三种方法都需要数学做基础。逻辑以推理和演绎为特征,需要严谨的数学知识做支撑;实验以观察和总结自然规律为特征,涉及对数据的记录和分析,不能没有数学知识;至于计算,更是数学的领地。简言之,数学为科学探究提供了简洁的语言、计算的工具与分析的方法。没有良好的数学基础,想拥有良好的科学素养和科学精神是不可能的。
教育数学在五个方面有重要进展
《瞭望》:教育数学目前取得了哪些成果?
张景中:四十多年来,教育数学主要在五个方面有了重要进展。
其一是在初等几何领域发展了面积法,基于小学知识得出的方法,把大量几何题变容易了。
基于我国几位学者共同努力,面积法发展成几何定理机器证明的消点法,成为国内外奥数培训的内容,还被编入一些高校师范类教材。
其二是发现了三角在小学数学知识基础上的生长点,提出用面积关系定义正弦,实现了国际上著名的数学教育大师弗赖登塔尔在四十多年前提出而国外未能实现的提前两年学正弦,让数学能配合物理进度的设想,让学生在七年级下就能掌握正弦定理与正弦和角公式,八年级上就能掌握余弦定理,在义务教育阶段掌握三角形的作图推理与计算。
这方面的研究始于1974年,1980年研究成果发表,2012年正式进入整体全学段教学实践。学生学得轻松有趣,负担减轻,成绩上升。广州海珠实验中学的两个实验班中考数学优秀率百分之百,入学时数学成绩中下的学生毕业时也达到优秀。
由北京航空航天大学数学与系统科学学院李尚志教授主编,主持过实验的张东方老师、赖虎强老师参与编写的教材《新思路数学》已于2020年出版,全国十几个省上百学校立项做进一步教学实验,目前进展良好。
其三是有关高中向量部分的学习中,发展了向量回路方法,消解了师生关于向量解几何题不如传统方法简便的困难。由此联系到数学与哲学大师莱布尼兹提出的“点如何相加”的问题,提出了点几何的纲要,用点的代数关系直接表达几何性质,用代数运算表达几何推理,在科普讲座中引起学生兴趣。
华中师范大学彭翕成博士将此作为博士论文主题,提出点几何恒等式明证的思想,编程做了大量探索,获得数千成功案例,对大量奥数难度几何题给出一两行的简捷证明,而且常常同时给出逆命题的解答。我和彭翕成合著的《点几何解题》一书,引起不少师生兴趣。点几何有助于串联坐标、向量和复数,有待进入教学实践。
其四是有关微积分如何变容易的问题。1979~1985年我教过微积分,做过把极限概念和实数理论变容易的努力,提出了较容易理解的定义极限的方法,发现了能简化实数理论的连续归纳法。后来有几种教材采用了这样的表达方法,其中一书的编者刘宗贵教授还做了成功的教学实验。近几年我在林群院士的带动激励下获得新进展,发现了可以严谨地先讲微积分再讲极限,而且可以在学习微积分之前系统而简捷地解决通常认为用微积分才能解决的许多问题。
最近我和林群院士合作的《减肥微积分》即将出版,希望能试用于高中教学实验。由于有多种层次的微积分用于教学,微积分教材的优化和教学实验内容十分丰富,有待进一步开展。最近我们提出的新的微积分逻辑体系已经通过了Coq机器检验,使得今后这方面的工作更有信心。
其五是学习探索如何将信息技术用于数学教学,使数学教与学更为生动有趣。
我们学习了美国《几何画板》动态几何软件,经过几年的努力推出了更为智能化的动态数学软件《超级画板》,具有“写画测算编演推算”多种功能。2017年以来形成了更为专业的团队,进一步发展成为《网络画板》,帮助师生更轻松地进行数学教学和数学实验。目前注册用户已超过150万,其中主要是数学老师。《网络画板》支持多种终端,上网可用,不需安装,断网也可用,包容支持其他教学系统共享,提供所有用户资源共享,获四川省2020年科技进步奖二等奖。
《瞭望》:为什么你觉得数学家在做科研之外还有责任关注和推动数学教育?
张景中:我感到关注和推动数学教育不是科研之外的事情。研究数学教育会遇到长期以来没有解决甚至被认为不能解决的问题,需要长时间地进行研究思考。例如几何解题简便的通用算法、不用极限讲微积分,都是前辈大数学家思考过而没有解决的问题。
做这样的研究,往往几十年才前进一步,但这一步就很有意义。由于无法预期其进展,所以我没有提出作为项目或课题,而是作为自己选定的长期研究目标。
寻求更有效的减负途径
《瞭望》:在数学人才培养方面你有什么建言?
张景中:我想要思想再解放一些,教学方法和教材更多地鼓励创新和多样化。要关注不同能力层次的孩子,鼓励课外阅读、数学编程,为基础不同的学生提供多样化的学习机会。中小学数学教学需要完善和加强的方面,最重要的是教材的精炼提高,以及教育信息技术的普及深入,这也是教育数学努力的方向。
《瞭望》:你怎么看待当下大家关心的教育“双减”?
张景中:减轻负担是教育的一个重要议题。对数学课来说,减轻负担最有效、最根本的一个方法,就是把数学本身变得更有效、更容易学。本来要花很多时间才能学会的内容,现在花很少时间就能学会。这就真正减轻学习负担了。
长期以来,在减负方面都存在一个误区,认为减负就是删繁就简,这不是真正的减负。繁难的知识可能也非常重要,不能简单删掉或者死记硬背下来。最好能改造数学知识体系,研究更优的解决方法,让学生能轻松且高效地学习。
数学最初的研究并不是为了孩子,为了教育,而是为了解决工程、技术、科学等方面的问题。所以,要让数学更适合孩子学习,就必须对数学本身进行加工、改造和研究,让它变得更容易学,学了就能够更有效地解题,而且懂得道理。一个是改变定义,另一个是改进方法。回顾四十多年教育数学走过的路,这也是致力于从数学里寻求更有效的减负增效的途径。■
四、数学好坏可预测
成人高考数学真题来源:生命时报
小到买菜、大到航空航天,都少不了数学的帮助。此外,数学作为成长道路的“必修课”,也成了很多人学习生涯的痛苦记忆。最近,英国牛津大学发表在《公共科学图书馆·生物学》杂志的最新研究发现,大脑中的神经递质可作为预测数学能力好坏的一个标志。
由于大脑的可塑性和人类的学习能力有关,所以该研究中,研究团队打算从大脑左侧顶叶内沟中的两种神经递质入手分析,分别是谷氨酸和γ-氨基丁酸。研究团队纳入了255名从6岁儿童至大学生人群作为参与者,并将他们以小组为单位进行后续数学测试。随后,将第一次和第二次的数学测试结果和核磁共振扫描观察到的情况相结合,结果显示,早期记录的神经递质水平可以预测未来(平均1.5年后)的数学能力。具体看,在儿童中,γ-氨基丁酸水平越高、谷氨酸水平越低,算术能力越强。成年人中,γ-氨基丁酸水平越低、谷氨酸水平越高,数学能力测试的结果越好。
研究人员表示,童年期和成年出现两种截然相反情况,猜测原因是早期发育阶段γ-氨基丁酸水平的提高会促进数学学习能力的提升,但随着年龄的增长,同样高的γ-氨基丁酸水平会影响我们的数学能力。 (林雨)
本文来自【生命时报】,仅代表作者观点。全国党媒信息公共平台提供信息发布传播服务。
ID:jrtt
五、2020成人高考政治 高数 英语 数学 语文真题答案
武汉成人高考数学试卷2020年成考已经结束了!
鲁建哥将2020年成考现有的考试科目答案整理了一下,包括专升本《政治》、《高数》、《英语》,高起点《数学》、《语文》!
篇幅过长,部分截图,完整版请前往鲁建网校公众号查看!
篇幅过长,部分截图,完整版请前往鲁建网校公众号查看!
篇幅过长,部分截图,完整版请前往鲁建网校公众号查看!
快来对答案吧!